Church density and the church membership ratio The cross-municipal pattern in Denmark, 2012

Martin Paldam, Aarhus University, Denmark¹

Abstract: The church density is the number of churches per inhabitant. The membership ratio is church membership in percent of the population. The paper is a statistical analysis of the Danish cross-municipal pattern in the two variables for 2012. Nine explanatory variables are used: Area, population, income (tax base per capita) and six regions. Four of these explanations work: Area, population, income and the capital region. Income and capital region have strong multicollinearity. The four variables explain both church density and the membership ratio. Once they are included, there is no interaction between membership and church density.

Nr	Section	Page
1.	Introduction	2
2.	Variables and correlations	5
3.	The regressions	11
4.	Another look at income versus capital region	17
5.	Population density and the ideal number of services	20
6.	The church membership ratio – a look back and ahead	24
7.	Conclusions	27
8.	References to papers in project on the religious transition	28
	Appendix: The data used	29

Note: This paper is a background paper in a project listed in the references. The paper is written in English to allow cross references to the other papers in the project although the subject matter is mainly of interest to Danes. All data used are reported in the Appendix.

^{1.} Department of Economics and Business, Fuglesangs Allé 4, Aarhus University, Dk-8210 Aarhus, Denmark, E-mail: mpaldam@econ.au.dk, URL: http://www.martin.paldam.dk - the home page of the project is found by clicking on 'Working papers' and the 'Grand transition project'.

1. Introduction

This paper is a statistical analysis of the Danish cross-municipal pattern in 2013 of the church density (*Lndens*) and church membership (*Mprc*), where I have also added a time series perspective. The church is the Lutheran Church that is the 'official' Danish Church

1.1 Two outcomes and nine explanations

The variables analyzed are defined in Table 1. The two outcome variables *Lndens* and *Mprc* are assumed to be functions of three quantitative variables, area, population and income, and a set of six qualitative (binary) variables for the regions of the country. It is divided into five administrative regions and I have added one extra 'region' by singling out five islands.

Variable	Definition and scaling. The data are reported in Appe	ndix
	Outcome: Church density (per 10,000 inh.)	
Lndens	Natural logarithm to Dens	
Dens *	Density, 10,000 times Net divided by Population	
All *	All churches in municipality, include churches in inst	itutions
Net *	Parish churches, All net of institutional churches	
	Outcome: church membership ratio (of population	n)
Mprc *	Mem as share of Pop (both scaled the same)	
Mem	Membership in the Danish People's Church	
	Quantitative explanations (natural logarithms, ln)	
Lnarea	Ln Area (before scaling)	
Lnpop	Ln population (Pop before scaling)	
Lntb	Income, ln tax base (<i>Tb</i>)	
Area *	Area in km ² scaled by division by 100	
Pop *	Population 2012 scaled by division by 10,000	
Tb *	Tax base per capita	
	Qualitative explanations: Administrative division	Number
Cap *	Capital Region, Bornholm is Island	28
Island *	Five islands that belong to regions, but may differ	5
MidJ *	Central Jutland Region, Samsø is Island	18
NorJ *	North Jutland Region, Læsø is Island	10
South *	South Denmark Region, Fanø and Ærø are Islands	20
Zea *	Zealand Region	17

Table 1. The variables for the 98 municipalities

Note: The rows shaded in gray are used to calculate the variables analyzed. *Island* is not an administrative division but consists of the islands listed. The numbers of municipalities reported are net of islands, so all numbers add to 98, as they should. The qualitative variables are binary dummies, which are 1 for municipalities in the region and 0 otherwise. The * indicates data reported in Table A1 of the Appendix.

The quantitative variables have rather skew distributions as shown in section 2, so three of the variables are given a logarithmic transformation. This improves the fit by re-weighting extreme observations, but the distributions are still non-normal.

1.2 The model

The analysis assumes that causality is straightforward: The geographic variables may cause the outcome variables, but not vice versa.

Figure 1. The main causal structure found

The paper analyzes the causal structure illustrated on Figure 1:

(i) The causal links, depicted by dark gray arrows, from the geographical variables to *Lndens* and *Mprc*. Only one of the regional dummies works throughout: It is *Cap* for the capital region. Thus, three geographic variables, *Lnarea*, *Lnpop* and *Cap*, cause church density, and they are also the main variables explaining church membership. *Income* is so related to *Cap* that the two variables can replace each other in explaining the outcomes, though the story is a bit more complex for *Mprc* than for *Ldens*.

(ii) The causal links, depicted as the dotted light gray arrow on the figure, from *Mprc* to *Lndens* and vice versa. Even when the two outcomes are highly correlated this turns out to be because they have the same explanations – links (i) dominate links (ii).

1.3 One part of a larger project on the religious transition

The statistical analysis is strictly cross-municipal, and thus it is a macro analysis. Obviously, one may want to dig deeper and explain the micro theory behind the macro relations, but this

is largely outside the frames of the analysis. However, the paper is a minor part of a project with two major parts (see references) analyzing the *religious transition*: It is the large fall in religiosity caused by the modern economic development that started two centuries ago.

The religious transition is one part of the grand transition, which is the large change in society that has taken place in Western Europe and which is gradually spreading to the rest of the world. Apart from the religious transition it has caused: (a) a twenty-fold increase in production per capita, (b) a five-fold increase in population, (c) a strong urbanization, etc.

Part one of the project analyzes the cross-county pattern in religiosity. This part of the project is published. Here the transition appears when poor and rich countries are compared. The analysis is done using 14 polled religiosity indicators for 95 countries covered by the World Values Survey. One of these is church membership. While church membership is negatively correlated to income, it is the variable with the (numerically) lowest correlation.

Part two of the project concentrates on the *Dens*-variable by using church data for Denmark starting well before modern economic development. The data are not yet complete, but it is clear that they will show a large fall in *Dens* that is explained by the religious transition. It also shows that few churches have been closed since 1800.

In terms of the grand transition incomes have grown more in the cities – notably in the capital region – and this has caused a large-scale urbanization leaving the rural areas with a falling or stagnating population.

These processes explain the skew distribution of churches: They can either be explained by income or by movements in the population: Churches in areas with a falling or stagnant population have not been closed, but few new ones have been needed in the areas where the population has grown, notably in the new suburbs to Copenhagen.

The *Mprc*-data show a much smaller variation as it appears that the religious transition has been much slower in this variable. See section 6 for a discussion of this variable, with a look backward and forward on the short time series.

2. Variables and correlations

The variables analyzed were defined in Table 1. The main series are given in the appendix table allowing the reader to check and replicate everything.

2.1 Descriptive statistics – Table 2 and Figure 2

Table 2 contains descriptive statistics which allow a couple of observations:

Firstly, the last row of Table 2 brings p-values (in %) for the skewness/kurtosis test of normality, which is always rejected. They are a little closer to normality after a logarithmic transformation. Regression results are fairly robust to non-normality, but the main results have to be checked for the effects of outliers.

Secondly, it appears that the *Dens*-variable varies $7\frac{1}{2}$ times from 2 to 15, which is much more than the *Mprc* that only varies $1\frac{1}{2}$ times from 0.6 to 0.9.

The relation between the two outcome variables is analyzed in Figure 2. The variables are related, but the average curve through the points is neither proportional nor linear. The figure distinguishes between the observations from the *Cap*-region and others by two shades of gray also used in later figures. The observations from the *Cap*-region are on an almost horizontal line, while the other observations are on an almost vertical line. This pattern does not change if the *Lndens* is used instead of *Dens*.

	-	The original data in sources $(1) - (6)$ (1)(2)(3)(4)(5)AllNetDensAreaPop2.4222,4024.3042,8955,584,68816Cross-municipal data (aver24.7124.515.40441.1956,9861621214.88361.4943,5541518.0217.943.80375.6865,3272220.798.101,88013868218.101488.86551,580280.870.821.050.785.305				(6)	The t	ransform	ned varial	oles (7) –	(11)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	All	Net	Dens	Area	Pop	Tb	Lndens	Mprc	Lnarea	Lnpop	Lntb
National values	2.422	2,402	4.30	42,895	5,584,688	162,938	1.46	0.798	10.67	15.536	12.001
			Cro	oss-munio	cipal data (a	averages d	lisregard s	size of m	unicipal)		
Mean	24.71	24.51	5.40	441.19	56,986	164,114	1.41	0.824	5.47	10.64	12.008
Median	21	21	4.88	361.49	43,554	154,222	1.58	0.848	5.89	10.68	11,946
Std Deviation	18.02	17.94	3.80	375.68	65,327	27,855	0.79	0.079	1.37	0.79	0,147
Smallest	2	2	0.79	8.10	1,880	137,498	-0.24	0.551	2.09	7.54	11,831
Largest	86	82	18.10	1488.86	551,580	288,553	2.90	0.920	7.31	13.22	12,573
Skewness	0.87	0.82	1.05	0.78	5.30	2.43	-0.31	-1.46	-0.82	-0.71	3.94
Kurtosis	3.57	3.35	4.01	2.94	37.26	6.87	2.01	1.87	2.57	6.96	1.89
Normality (%)	0.43	0.82	0.06	1.62	0.00	0.00	0.23	0.00	0.96	0.01	0.00

Table 2. The qualitative variables – descriptive statistics

Note: All skewness/kurtosis normality tests are below 5 %, so they reject normality. The area data does not aggregate perfectly as some (minor) areas are under state jurisdiction.

Figure 2. The outcome variables: The scatter of *Dens* over *Mprc*

2.2 The distribution of the two outcomes and income, Figures 3, 4 and 5

Figure 3 shows the distribution of *Lndens*. When the same figure is calculated for *Dens* it has a long tail to the right. The distribution of *Lndens* has two peaks: The left hand group for *Lndens* < 1 largely consists of the municipalities in the *Cap* (Capital) Region while the right hand group for *Lndens* > 1 are all other municipalities. Appendix Table A2 lists the exceptions to this picture. Both groups seem to be normally distributed.²

^{2.} Figure 3 suggests that if a number x is added to *Lndens* for the municipalities in the Capital region, normality results. This has been done for x = 0.6, 0.7, ..., 1,6 for three normality tests: Skewness-Kurtosis (1.14), Shapiro-Wilks (1.05) and Shapiro-Francia (1.01), where the number in brackets is the best x. In all cases normality is accepted at the 50% level for all x in the interval from 0.9 to 1.3.

Figure 4 is drawn as Figure 3, but for *Mprc*. It shows a less clear picture where the *Cap*-group has a large variation. The picture does not get clearer by taking the logs or the antilog. Figure 5 shows the distribution of the income data that looks more similar to the one for *Mprc* than the one for *Lndens*. However, Figures 6 and 7 show a more complex pattern.

Figure 4. The distribution of Mprc, the church membership percentages

Figure 5. The distribution of *Tb*, the tax base per capita

When Figures 3, 4 and 5 are compared it is not surprising that *Cap* does a good job explaining *Ldens*, while it is a little more difficult to explain Mprc – here income also contributes. Section 4 considers the same variables in different representation.

2.3 Looking at the 2 x 10 extreme municipalities

Table 3 shows the large difference between the municipalities with the 10 lowest and the 10 highest church densities. The 10 lowest are all suburbs to Copenhagen that grew rapidly in the 20^{th} century. The 10 highest are rural municipalities with stagnating population.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
The 10 lo	west chur	ch densit	ties	The 10 high	The 10 highest church densities						
Municipality	Region	Dens	Lndens	Municipality	Region	Dens	Lndens				
Hvidovre	Cap	0.79	-0.240	Ærø	Island	10.55	2.356				
Glostrup	Cap	0.92	-0.080	Vesthimmerland	NorJ	10.64	2.365				
Tårnby	Cap	0.97	-0.029	Rebild	NorJ	11.08	2.405				
Albertslund	Cap	1.08	0.073	Lolland	Zea	11.95	2.481				
Rødovre	Cap	1.08	0.080	Lemvig	MidJ	12.19	2.501				
Brøndby	Cap	1.17	0.160	Thisted	NorJ	13.15	2.576				
Gladsaxe	Cap	1.22	0.200	Langeland	South	15.37	2.732				
Hørsholm	Cap	1.23	0.209	Morsø	NorJ	15.91	2.767				
Ballerup	Cap	1.25	0.221	Læsø	Island	15.96	2.770				
Furesø	Cap	1.31	0.270	Samsø	Island	18.10	2.896				

Table 3. The extreme densities (Dens and Lndens)

Note: The regions are defined in Table 1. The Appendix reports the region of all municipalities.

The same story applies to the membership ratio: All 10 municipalities with the lowest *Mprc*'s are in the *Cap* region, and all 10 with the lowest *Mprc*'s are more rural municipalities.

This already suggests a story – a story that will unfold as the paper proceeds.

(1)	(2)	(3)	(4)	(5)	(6)				
The 10 lowest n	nembershi	p ratios	The 10 highest membership ratios						
Municipality	Region	Mprc	Municipality	Region	Mprc				
Ishøj	Cap	0.551	Hjørring	NorJ	0.897				
København	Cap	0.585	Vesthimmerland	NorJ	0.899				
Albertslund	Cap	0.588	Assens	South	0.899				
Brøndby	Cap	0.622	Ringkøbing-Skjern	MidJ	0.900				
Frederiksberg	Cap	0.648	Varde	South	0.902				
Høje-Taastrup	Cap	0.678	Nordfyns	South	0.904				
Gladsaxe	Cap	0.690	Skive	MidJ	0.905				
Herlev	Cap	0.704	Brønderslev	NorJ	0.912				
Hvidovre	Cap	0.708	Læsø	Island	0.916				
Rødovre	Cap	0.711	Lemvig	MidJ	0.920				

Table 4. The extreme membership ratios (*Mprc*)

Note: Half the low end municipalities are the same as in Table 3, while there are two overlaps in the high end.

2.4 The correlations between the variables

Table 5 reports the correlations between the main variables analyzed. The discussion concentrates on rows R1 and R2. As mentioned in the introduction the analysis looks for:

(i) The links between *Lndens* and *Mprc* and the quantitative variables, which are columns C3 to C5. The two rows (R1 and R2) are very similar, and only the correlations in columns C3 to *Lnarea* and in C5 to *Lntb* are significant. The correlations to *Lnpop*, though negative as expected, are much smaller than the ones to *Lnarea*.

The correlations to the regional dummies are given in columns C6 to C11. Only the correlations to *Cap* are significant. Also, it is interesting that the correlations to the other regional dummies are small and positive. This is as suggested by Figures 3 and 4.

(ii) The link between *Lndens* and *Mprc*. It is no less than 0.82, so the two outcome variables are strongly correlated, as was already shown on Figure 2.

		C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	
		Outc	omes	Area,	pop and i	ncome	Regional dummies						
		Lndens	Mproc	Lnarea	Lnpop	Lntb	Cap	Zea	South	MidJ	NorJ	Island	
R1	Lndens	1	0.82	0.74	-0.28	-0.66	-0.80	0.13	0.16	0.26	0.28	0.27	
R2	Mproc	0.82	1	0.76	-0.19	-0.49	-0.78	0.07	0.26	0.29	0.27	0.13	
R3	Lnarea	0.74	0.76	1	0.30	-0.68	-0.78	0.11	0.28	0.35	0.29	-0.10	
R4	Lnpop	-0.28	-0.19	0.30	1	-0.04	-0.01	0.03	0.11	0.17	0.05	-0.58	
R5	Lntb	-0.66	-0.49	-0.68	-0.04	1	0.69	-0.02	-0.25	-0.27	-0.27	-0.09	
R6	Cap	-0.80	-0.78	-0.78	-0.01	0.69	1	-0.29	-0.32	-0.30	-0.21	-0.15	
R7	Zea	0.13	0.07	0.11	0.03	-0.02	-0.29	1	-0.23	-0.22	-0.15	-0.11	
R8	South	0.16	0.26	0.28	0.11	-0.25	-0.32	-0.23	1	-0.24	-0.17	-0.12	
R9	MidJ	0.26	0.29	0.35	0.17	-0.27	-0.30	-0.22	-0.24	1	-0.16	-0.11	
R10	NorJ	0.28	0.27	0.29	0.05	-0.27	-0.21	-0.15	-0.17	-0.16	1	-0.08	
R11	Island	0.27	0.13	-0.10	-0.58	-0.09	-0.15	-0.11	-0.12	-0.11	-0.08	1	

Table 5. Correlations between the two outcomes and the nine explanations

Note: As the series are non-normal, the standard significance level (0.20) for the coefficient of correlation is not used, but the coefficients from 0.30 and up are bolded. The correlations between the regional dummies make no sense so they are shaded in gray.

As explained in section 1.2 (in the introduction) the other papers in the project suggest that income, *Lntb*, and large towns, notably *Cap*, should have the same negative effect on both *Lndens* and *Mprc*. This is certainly the case.

		C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12		
				Kend	all's τ			Spearman's p							
		Lndens	Mproc	Lnarea	Lnpop	Lntb	Cap	Lndens	Mproc	Lnarea	Lnpop	Lntb	Cap		
R1	Lndens	1	0.65	0.45	-0.16	-0.50	-0.40	1	0.84	0.63	-0.22	-0.70	-0.75		
R2	Mproc	0.65	1	0.50	-0.09	-0.49	-0.39	0.84	1	0.69	-0.13	-0.71	-0.74		
R3	Lnarea	0.45	0.50	1	0.29	-0.52	-0.38	0.63	0.69	1	0.41	-0.72	-0.72		
R4	Lnpop	-0.16	-0.09	0.29	1	-0.02	-0.06	-0.22	-0.13	0.41	1	-0.04	-0.10		
R5	Lntb	-0.50	-0.49	-0.52	-0.02	1	0.36	-0.70	-0.71	-0.72	-0.04	1	0.68		
R6	Cap	-0.40	-0.39	-0.38	-0.06	0.36	-	-0.75	-0.74	-0.72	-0.10	0.68	1		

Table 6. A confirmation using distribution free (rank) correlations

Note: The results are the same using the original series: Dens, Area, Pop, Tb.

Table 6 is just a control of the main correlation using the two standard distribution free rank correlations. It is a well-known property of the tests that Kendall's τ is numerically smaller (by at least 50 %) than Spearman's ρ . It is reassuring that the pattern in the correlations is the same for all three correlations used. Especially, it should be noted that both outcomes have rather similar negative correlations to *Lntb* and *Cap*.

Table 7 makes two points: First, it shows that the logarithmic transformations are better than the original series in most cases. Second, it shows that *All*, which contains all churches, is slightly inferior to *Net*, which only considers parish churches. This is why *Dens* is based on *Net*, but when rows R10 and R11 are compared, it is clear that it hardly matters.

		C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
		Lndens	Mproc	Lnarea	Lnpop	Lntb	Dens	Area	Pop	TaxBase	All	Net
R1	Lndens	1	0.82	0.74	-0.28	-0.66	(0.92)	0.58	-0.21	-0.63	0.46	0.47
R2	Mproc	0.82	1	0.76	-0.19	-0.49	0.66	0.60	-0.30	-0.45	0.34	0.36
R3	Lnarea	0.74	0.76	1	0.30	-0.68	0.52	(0.86)	0.10	-0.64	0.72	0.73
R4	Lnpop	-0.28	-0.19	0.30	1	-0.04	-0.43	0.36	(0.73)	-0.04	0.62	0.62
R5	Lntb	-0.66	-0.49	-0.68	-0.04	1	-0.56	-0.58	-0.03	(0.99)	-0.51	-0.51
R6	Dens	(0.92)	0.66	0.52	-0.43	-0.56	1	0.41	-0.25	-0.52	0.34	0.34
R7	Area	0.58	0.60	(0.86)	0.36	-0.58	0.41	1	0.12	-0.54	0.76	0.76
R8	Pop	-0.21	-0.30	0.10	(0.73)	-0.03	-0.25	0.12	1	-0.04	0.61	0.59
R9	Tb	-0.63	-0.45	-0.64	-0.04	(0.99)	-0.52	-0.54	-0.04	1	-0.48	-0.48
R10	All	0.46	0.34	0.72	0.62	-0.51	0.34	0.76	0.61	-0.48	1	1.00
R11	Net	0.47	0.36	0.73	0.62	-0.51	0.34	0.76	0.59	-0.48	1.00	1

Table 7. Correlations between the quantitative variables and the auxiliary variables

Note: See note to Table 5. The correlations in the top square to the left are shaded in gray as they are the same as the corresponding ones in Table 5. The correlations in brackets are the variables correlated with their own logarithmic transformation.

3. The regressions

The regressions use the following framework:

(1a)
$$Ldens_i = \beta_{1d}Lnarea_i + \beta_{2d}Lnpop_i + \beta_{3d}Lntb + \sum_{i=1}^5 \gamma_{di}reg_i + Con_d + u_{id}$$

(1b)
$$Mprc_i = \beta_{1m}Lnarea_i + \beta_{2m}Lnpop_i + \beta_{3m}Lntb + \sum_{i=1}^5 \gamma_{mi}reg_i + Con_m + u_{ia}$$

where reg = Cap, Zea, NorJ, South and Island, i.e., MidJ is deleted as the most typical region taken as the constant. Con is the constant. The standard testing down method gives the following two relations:

(2a)
$$Ldens_i = \beta_{1d}Lnarea_i + \beta_{2d}Lnpop_i + \gamma_dCap_i + Con_d + u_{id}$$

(2b)
$$Mprc_{i} = \beta_{1m}Lnarea_{i} + \beta_{2m}Lnpop_{i} + \gamma_{1m}Cap_{i} + \beta_{3m}Lntb + \gamma_{2m}Zea_{i} + \gamma_{3m}Island_{i} + Con_{m} + u_{in}$$

The two equations are fairly parallel. They are estimated by OLS, and all coefficients are significant – also if robust standard errors are used. Two additional relations are discussed:

(3a)
$$Ldens_i = \beta_{1d}Lnarea_i + \beta_{2d}Lnpop_i + \gamma_dLntb_i + Con_d + u_{id}$$

(3b)
$$Mprc_i = \beta_{1m}Lnarea_i + \beta_{2m}Lnpop_i + \gamma_{1m}Cap_i + Con_m + u_{im}$$

3.1 Explaining Lndens, the logarithmic church density

Table 8 contains the estimates of equations (1a) and (2a) that are reached by testing down (1a). A comparison of equations (2a) and (3a) shows that *Cap* and *Lntb* (Income) are almost equally good as an explanatory variable. However, it should be noted from equation (7a) that *Lnpop* and *Lnarea* provide most of the explanatory power.

Equations (4a) to (12a) are variants showing the effects of the individual variables. It is interesting to look at (3a) to (5a) showing that while *Lnarea* explains much more than *Lnpop* when they are the only regressor, *Lnpop* adds substantially when both variables are in together. It is also interesting to compare (2a) and (7a) showing the pattern of multicolline-arity between *Lnarea*, *Lnpop* and *Cap* (the capital region). There is some multicollinearity, but all three variables clearly belong. However, all the 5 remaining regional variables are fully represented by *Lnarea* and *Lnpop*.

Eq.	Lnarea	Lnpop	Lntb	Cap	Zea	MidJ	NorJ	South	Island	Con	R^2 adj
(1a)	0.36	-0.46	-0.41	-0.50	-0.05		0.08	-0.15	0.01	9.47	0.85
	(7.9)	(-8.8)	(-1.3)	(-3.3)	(-0.4)		(0.6)	(-1.5)	(0.1)	(2.4)	
(2a)	0.39	-0.48		-0.48						4.56	0.85
	(9.2)	(-11)		(-4.0)						(10.7)	
(3a)	0.47	-0.53	-0.75							13.46	0.83
	(13)	(-12)	(-2.4)							(3.5)	
(4a)	0.43									-0.95	0.55
	(11)									(-4.2)	
(5a)		-0.28								4.35	0.07
		(-2.8)								(4.2)	
(6a)			-3.57							44.28	0.43
			(-8.7)							(9.0)	
(7a)	0.53	-0.55								4.41	0.82
	(20)	(-12)								(9.7)	
(8a)	0.53	-0.55			0.10					4.40	0.82
	(20)	(-12)			(1.1)					(9.7	
(9a)	0.52	-0.56				0.09				4.47	0.82
	(19)	(-12)				(1.0)				(9.7)	
(10a)	0.52	-0.55					0.14			4.42	0.82
	(19)	(-12)					(1.2)			(9.7)	
(11a)	0.54	-0.55						-0.08		4.38	0.82
	(20)	(-12)						(-0.9)		(9.6)	
(12a)	0.53	-0.52							0.20	4.04	0.82
	(20)	(-9.4)							(1.1)	(7.1)	

Table 8. Regressions explaining Lndens

The main regression (2a) is rather satisfactory with both high t-ratios and a fine R^2 -score. It is possible to polish the relation by deleting/including some borderline cases (such as the ones listed in Appendix table A4) in *Cap*, but it barely matters for the result.

Interpretation of the sizes of the effects in (2b): As all quantitative variables are in logs on both sides, the coefficients are *elasticities*. If the municipality is compared with one with twice the area, but the same number of people, it has 39 % more churches. If a municipality is compared with one with twice as many people, but the same area, the density of churches falls by 48 %. The two elasticities add to -0.1, so a municipality with twice the area and population has slightly less than twice the number of churches. The *Cap*-variable is not in logs, so the results show that the municipalities in the Copenhagen region have $e^{0.5} \approx 1.6$ less churches per 10'000 inhabitants, much as suggested by Figure 3.

Note also to Table 9: The main regression is Eq (2a) that it is reached when regression (1a) is tested down. Significant coefficients are bolded. N = 98 in all regressions.

3.2 Explaining Mprc, the church membership ratio

Table 9 explains the membership ratio. The variation is much less, the scaling differs, and it is not in logs. Consequently, all coefficients are about 10 times smaller in Table 9 than in Table 8, and hence one more digit is reported in Table 9.

Eq.	Lnarea	Lnpop	Lntb	Cap	Zea	MidJ	NorJ	South	Island	Con	R^2 adj
(1b)	0.042	-0.047	0.164	-0.084	-0.030		0.007	-0.002	-0.049	-0.838	0.83
	(8.8)	(-8.6)	(4.9)	(-5.2)	(-2.7)		(0.5)	(-0.2)	(-2.4)	(-2.1)	
(2b)	0.043	-0.048	0.162	-0.083	-0.031				-0.049	-0.818	0.84
	(9.1)	(-8.8)	(4.9)	(-5.7)	(-3.2)				(-2.6)	(-2.0)	
(3b)	0.040	-0.040		-0.041						1.041	0.78
	(8.0)	(-7.4)		(-2.9)						(20.6)	
(4b)	0.044									0.585	0.57
	(11)									(27)	
(5b)		-0.019								1.022	0.03
		(-1.9)								(9.6)	
(6b)			-0.263							3.985	0.24
			(-5.6)							(7.0)	
(7b)	0.060	-0.049	0.101							-0.193	0.78
	(15)	(-9.7)	(2.9)							-0.5	
(8b)	0.046	-0.042	0.144	-0.059						-0.695	0.81
	(9.5)	(-8.5)	(4.2)	(-4.2)						(-1.7)	
(9b)	0.060	-0.049	0.103		-0.006					-0.215	0.78
	(15)	(-9.6)	(2.9)		(-0.6)					(-0.5)	
(10b)	0.059	-0.050	0.103			0.014				-0.202	0.78
	(14)	(-9.8)	(2.9)			(1.3)				(-0.5)	
(11b)	0.059	-0.049	0.105				0.013			-0.237	0.78
	(15)	(-9.6)	(2.9)				(1.0)			(-0.6)	
(12b)	0.059	-0.050	0.108					0.016		-0.272	0.79
	(15)	(-9.8)	(3.1)					(1.6)		(-0.6)	
(13b)	0.060	-0.053	0.097						-0.023	-0.105	0.78
	(15)	(-8.6)	(2.7)						(-1.1)	(-0.2)	
(14b)					0.017				0.048	0.819	0.00
					(0.8)				(1.3)	(91)	

Table 9. Regressions explaining Mprc

Note: If *Lntb* is replaced by *Tb*, it has virtually no effect.

If the difference in scaling is disregarded, the pattern reported in the two tables is rather similar, except for one problem: When income, *Lntb*, is included it gets a positive sign and the effect of *Cap* becomes twice as large. The positive sign on *Lntb* is contrary to the theory discussed in section 1.2 and the correlations in Tables 5 and 6 and regression (6b). Also, two regional dummies, *Zea* and *Iland*, become significant and obtain negative signs while they

should have positive signs. The positive signs follow from the correlations in Table 5 and from equations (9b) and (12b), not to mention regression (14b). These sign-shifts point to multicollinearity. The equation has too many highly correlated variables.

This argues for using the estimate (3b) that is parallel to (2a) and where all estimated coefficients make sense, also the relative sizes of the effects in (3b) and (2a) are rather similar. If income is deleted, the testing down version becomes (3b) which is the same as (2a).

Interpretation of the sizes of the effects in (3b): The two quantitative explanations are in logs and of the same numerical size, and as $\ln(2) \approx 0.69$ and $0.040 \cdot 0.69 \approx 3$. Hence, a crude indication of the results is that if the municipality is compared with one with twice the area, but the same number of people, church membership is 3 percentage points larger. If a municipality is compared with one with twice as many people, but the same area, church membership is 3 percentage points less. It further follows that church membership is 4 percentage points lower in the capital region when corrected for geographical differences.

3.3 The interaction of Lndens and Mprc

Table 5 reported a high correlation (0.82) between the two endogenous variables *Lndens* and *Mprc*. They are explained rather well by the same variables in roughly the same proportions, so they must be correlated, but it is interesting if they are related in any other way.

Ea		E	vnloinin.	a Inda			Fa	Explaining Marc					
Eq.		E.	хріанні	g Lnaei	15		Eq.	Explaining <i>Mprc</i>					
	Mproc	Lnarea	Lnpop	Cap	Con	\mathbb{R}^2 adj	Ι	Indens I	Lnarea	Lnpop	Cap	Con	\mathbf{R}^2 adj
(13a)	8.27				-5.41	0.67	(15b)	0.082				0.709	0.67
	(14)				(-11)			(14)				(75)	
(14a)	1.16	0.47	-0.50		3.22	0.83	(16b)	0.015	0.044	-0.037		0.961	0.77
	(1.3)	(8.8)	(-8.3)		(3.1)			(1.3)	(6.4)	(-4.5)		(13)	
(15a)	0.25	0.38	-0.47	-0.47	4.30	0.85	(17b)	0.003	0.039	-0.038	-0.040	1.025	0.78
	(0.3)	(6.9)	(-8.3)	(-3.7)	(4.3)			(0.3)	(5.6)	(-4.8)	(-2.5)	(13)	

Table 10. Adding the other explained variable

Table 10 shows that they are not – using (2a) and (3b). Once the relation is controlled for the three variables in the main model, *Mprc* adds nothing to the *Lndens* relation and vice versa. The same result is reached when (3b) is replaced with (2b) explaining.

This completes the regression study of the causal structure as shown on Figure 1, but section 4 returns to the interplay between income and the capital region.

3.4 The cross-regional and cross-municipal stability of the two main relations

A simple way to control the relations for stability is to systematically delete municipalities and see if the relation changes. This turns out to be a rather dull enterprise as the two relations barely change, so this exercise will not be reported. Table 11 shows a stronger experiment, where each region is deleted. The table is in two sections:

The first section looks at the estimate of *Lndens*, i.e., Equation (1a) in the table is the same as (2a) in Table 7. Then the equation is re-estimated after the deletion of each region one at the time. When the *Cap*-region is deleted the *Cap*-dummy is irrelevant, so row (2a) in the table is a bit different from the other ones. However, even row (2a) does not differ much. The second half of the table repeats the same exercise for the main relation explaining *Mprc*, showing parallel results.

Column (6) is shaded in gray. It reports estimates of the same relation adding the other explanatory variable, but as the results to the three main variables change marginally they are not reported. Only the coefficients to the new variable are reported. None of these estimates are even approaching significance.

		(1)	(2)	(3)	(4)	(5)	(6)
			Estimates	s explaining <i>Lnde</i>	ens using equat	ion (2a)	
		Lnarea	Lnpop	Cap	Constant	\mathbb{R}^2 adj	Mproc added
(2a)	All	0.391 (9.2)	-0.484 (-11)	-0.481 (-4.0)	4.557 (11)	0.847	0.246 (0.3)
(2.1a)	No Cap	0.518 (10)	-0.650 (-14)		5.544 (14)	0.741	1.304 (0.9)
(2.2a)	No Zea	0.335 (6.7)	-0.452 (-9.3)	-0.625 (-4.3)	4.574 (10)	0.854	0.480 (0.5)
(2.3a)	No MidJ	0.385 (8.3)	-0.467 (-9.2)	-0.481 (-3.7)	4.403 (9.2)	0.846	-0.206 (-0.2)
(2.4a)	No NorJ	0.375 (8.7)	-0.461 (-10)	-0.495 (-4.1)	4.383 (10)	0.849	0.428 (0.5)
(2.5a)	No South	0.389 (8.6)	-0.442 (-9.0)	-0.529 (-4.1)	4.165 (9.2)	0.866	0.032 (0.0)
(2.6a)	No Island	0.389 (9.0)	-0.496 (-9.4)	-0.492 (-4.0)	4.702 (8.8)	0.844	0.124 (0.1)
			Estimate	es explaining <i>Mp</i>	rc using equation	on (3b)	
		Lnarea	Lnpop	Cap	Constant	\mathbf{R}^2 adj	Lndens added
(3b)	All	0.040 (8.0)	-0.040 (-7.4)	-0.041 (-2.9)	1.041 (21)	0.782	0.003 (0.3)
(3.1b)	No Cap	0.036 (8.2)	-0.035 (-8.7)		1.019 (30)	0.562	0.010 (0.9)
(3.2b)	No Zea	0.042 (6.9)	-0.040 (-6.6)	-0.040 (-2.3)	1.031 (19)	0.792	0.007 (0.5)
(3.3b)	No MidJ	0.039 (6.8)	-0.038 (-6.1)	-0.042 (-2.6)	1.026 (18)	0.763	-0.003 (-0.2)
(3.4b)	No NorJ	0.039 (7.3)	-0.040 (-6.9)	-0.041 (-2.7)	1.045 (19)	0.768	0.007 (0.5)
(3.5b)	No South	0.043 (7.3)	-0.041 (-6.4)	-0.033 (-2.0)	1.031 (18)	0.775	0.001 (0.0)
(3.6b)	No Island	0.040 (7.7)	-0.042 (-6.7)	-0.043 (-2.9)	1.069 (17)	0.779	0.002 (0.1)

Table 11. The robustness of the main equations to deletion of regions

Note: Column (6) is the same regression as in (1) to (5), but with the extra regressor added. As it is nowhere significant the rest of the regression is virtually the same as in columns (1) to (5).

3.5 The logarithmic transformation of Dens

The reader may want to see how the logarithmic transformation of *Dens*, *Area* and *Pop* affects the results. In small samples this is often crucial, but as the analysis considers the sample of 98 municipalities, it does not matter for the qualitative structure in the results, but it does influence the fit substantially. This is shown in Table 12.

Plain	data		The depend	lent variable is De	ens				
(Not	logs)	Area	Pop	Cap	Cons	\mathbf{R}^2 adj			
	(1)		-0.15 (-2.6)		6.24 (13)	0.05			
	(2)	0.41 (4.4)			3.58 (6.6)	0.16			
	(3)	0.45 (5.0)	-0.18 (-3.4)		4.44 (7.7)	0.24			
	(4)	0.08 (0.8)	-0.14 (-3.2)	-4.80 (-5.8)	7.24 (11)	0.44			
Log version			The depend	lent variable is De	ns Cons. P^2 adj				
		Lnarea	Lnpop	Cap	Cons	\mathbf{R}^2 adj			
	(5)		-2.05 (-4.6)		27.19 (5.8)	0.17			
	(6)	1.46 (6.0)			-2.59 (-1.9)	0.27			
	(7)	2.01 (11.4)	-3.10 (-10)		27.43 (8.9)	0.65			
	(8)	1.51 (5.0)	-2.85 (-8.8)	-1.75 (-2.0)	27.97 (9.2)	0.66			
Log-log	version		The depende	ent variable is Lnd	lens				
		Lnarea	Lnpop	Cap	Cons	\mathbb{R}^2 adj			
	(9)		-0.28 (-2.8)		4.35 (4.2)	0.07			
	(10)	0.43 (10.8)			-0.95 (-4.2)	0.55			
	(11)	0.53 (20.3)	-0.55 (-12)		4.41 (9.7)	0.82			
Main	(12)	0.39 (9.2)	-0.48 (-11)	-0.48 (-4.0)	4.56 (11)	0.85			

Table 12. Explaining *Dens* and *Lndens*, N = 98

Note: All regressions in the last section of the table were also reported in Table 8 above.

4. Another look at income versus capital region

To further explore the relationship between the two related explanatory variables *Lntb* and *Cap*, they are shown in scatter diagrams of *Lndens* and *Mprc* over *Lntb*.

4.1 *Church density and the two explanations*

Figure 6 gives a fairly clear picture where the scatter is dominated by a downward sloping line, and as we already know, nearly all the *Cap*-points are to the right on the figure.

Table 13. The municipalities in the two zones marked on Figure 6

Zone 1: The	Zone 1: The most deviating cases				Zone 2: The moderately deviating cases				
Municipality	Region	Lntb	Lndens		Municipality	Region	Lntb	Lndens	
Odense	South	11.909	0.657		Halsnæs	Cap 2	11.961	0.952	
Ishøj	Cap 1	11.920	0.351		Fredericia	South	11.968	0.784	
Albertslund	Cap 3	11.978	0.073		Aarhus	MidJ	11.972	0.708	
Brøndby	Cap 4	12.018	0.160		Høje-Taastrup	Cap 5	12.026	0.375	
Hvidovre	Cap 7	12.042	-0.240		København	Cap 6	12.029	0.397	
Rødovre	Cap 8	12.054	0.080		Herlev	Cap 11	12.097	0.408	
Tårnby	Cap 10	12.081	-0.029		Helsingør	Cap 12	12.098	0.485	
Glostrup	Cap 16	12.122	-0.080		Vallensbæk	Cap 13	12.104	0.315	
					Ballerup	Cap 14	12.109	0.221	
					Gladsaxe	Cap 17	12.123	0.200	

Note: The number given after *Cap* is the income rank from 1 for the lowest to 28 for the highest.

The observations that are most contrary to this picture are the ones in Zone 1 and less so the ones in Zone 2. Table 13 shows that two zones contain the poorer *Cap* municipalities.

4.2 Church membership and the two explanations

When the same analysis is made for Mprc the picture of the point scatter on Figure 7 is more interesting: The negative slope is still clear, but now Zone 1 deviates rather strongly. It consists of the 5 poorest municipalities in the capital region.³

Figure 7. Scatter of Mprc over Lntb, income, with Cap marked

Table 14. The municipalities in the two zones marked on Figure 7

Zone 1: Th	Zone 1: The most deviating cases				Zone 2: The moderately deviating cases				
Municipality Region Lntb Lndens		Municipality	Region	Lntb	Lndens				
Ishøj	Cap 1	11.920	0.551	Hvidovre	Cap 7	12.042	0.708		
Albertslund	Cap 3	11.978	0.588	Rødovre	Cap 8	12.054	0.711		
Brøndby	y Cap 4 12.018 0.622		0.622	Herlev	Cap 11	12.097	0.704		
Høje-Taastrup	Cap 5	12.026	0.678	Vallensbæk	Cap 13	12.104	0.714		
København	Cap 6	12.029	0.585	Ballerup	Cap 14	12.109	0.720		
				Gladsaxe	Cap 17	12.123	0.690		
				Frederiksberg	Cap 20	12.191	0.648		
				Odense		11.909	0.780		
				Aarhus MidJ		11.972	0.748		

Note: see note to Table 13.

^{3.} One of the 'poor' municipality in the Cap region appears outside the two zones. It is Halsnæs (around Fredriksværk) which is not a truly 'metropolitan' area.

The 5 municipalities in Zone 1 are the 'labor' suburbs and Copenhagen itself, and they have large immigrant populations. So the picture does make a great deal of sense.

5. Population density and the ideal number of services

The last paragraphs of sections 3.1 and 3.2 convert the regressions results to effect sizes. This is perhaps the best ways to understand the results, but two more techniques will be used.

5.1 *Population densities*

The regressions separate out the effects of area and population, but as the effects are roughly similar numerically it is possible to combine the two explanations in the form a population density (population per km^2) as done in Figure 8.

The figure uses the log to population density to 'explain' *Lndens*. It is nice to see that a fairly linear path emerges on the graph. However, also some of the observations from the Capital Region are to the right of the line through the non-capital observations. The two extreme high population densities are Frederiksberg and Copenhagen, which are the two most built-up municipalities in Denmark. It is clear (also) from Figure 8 why the best regression above gives a rather satisfactory explanation from the point of view of statistics.

Figure 8. Logarithmic density 'explained' by logarithm to population density

Note: The two extreme high population densities are Frederiksberg and Copenhagen.

The next question is if the log-log regression with population and area and the Capital Region makes sense. Why should the best regression fit so well? The double log form indicates big effects of distance and size, but the intuition suffers a bit when both axes are in logs.

Figure 9a. Looking at the plain data – low population density

Figure 9b. Looking at the plain data – high population density

Consequently, Figure 8 has been recalculated in the plain data. To be readable it has been broken into two, and the two extreme points for Frederiksberg and Copenhagen are deleted. This has produced Figures 9a and 9b.

The average curve is assessed at five points in the small Table 15. In a suburban detached housing area with 500 inhabitants per km^2 there are 2 churches per 10,000 inhabitants, while there are 10 in a rural area with 50 inhabitants per km^2 .

Virtually all rural households and all vicars have cars in Denmark, and the network of roads is dense and fine. Consequently, distances measured in time and money have shrunk radically. This has had a large effect on the density of schools and supermarkets, but a small effect on the distribution of churches.

Table 15. Five examples assessed from Figures 9a and b

(1)	(2)	(3)	(4)	(5)	(6)
Pop/km ²	25	50	100	250	500
Church density	17	10	6	3	2

5.2 The 'ideal' number of services

Another way to visualize the data is to assume that a good Lutheran should attend one service per week, preferably on Sunday. Assume further that all churches has space for 150 churchgoers.

From these assumptions it can be calculated how many services the average church in each municipality should ideally hold. The average municipality in this regard is Holbæk, which has 33 churches and 69,354 inhabitants of which 57,005 are church members. This gives 1,727 members per church, so it should ideally hold 12 services per week to accommodate all. In fact, the average church in Holbæk municipality holds less than one service per week and it is not very crowded at that occasion, giving a service attendance rate of 2-3%.

Figure 10 shows the distribution of the ideal number of services in the municipalities, and as before the municipalities with the highest and lowest scores are given in a table. The figure looks as expected with the *Cap*-region in one end – having many church members per church, and thinly populated municipalities far from the capital in the other end. The key observation from Figure 10 is the cross-country range of the numbers calculated. In the capital region the average is 34, while it is 11 in the rest of the country.

Note: Calculated as the number of services (for 150 church members) necessary to accommodate all members one time per week in the average church in the municipality.

(1)	(2)	(3)	(4)	(5)	(6)			
The 10 hig	ghest scor	es	The 10 lowes	The 10 lowest scores				
Municipality	Region	Numbe	Municipality	Region	Mprc			
Hvidovre	Cap	60	Samsø	Island	3			
Glostrup	Cap	54	Morsø	NorJ	4			
Tårnby	Cap	53	Læsø	Island	4			
Rødovre	Cap	44	Langeland	South	4			
Hørsholm	Cap	43	Thisted	NorJ	4			
Ballerup	Cap	38	Lolland	Zea	5			
Gladsaxe	Cap	38	Lemvig	MidJ	5			
Lyngby-	Cap	38	Rebild	NorJ	5			
Dragør	Cap	37	Ærø	Island	6			
Furesø	Cap	37	Vesthimmerland	NorJ	6			

Table 16. The extreme scores for the ideal number of services

Hvidovre (*Cap*, Pop = 50,871) tops the list with 9,000 church members per church, so the churches would need 60 services per week to accommodate all members. Here churches actually hold one service per week, and these services are not crowded. Samsø (*Island*, Pop = 3,867) has 7 churches, but only three vicars and the services are spread out, so that each vicar holds (at most) one service per week. Thus, the church use is adjusted somewhat to the densities by having fewer services than in the high density churches.

6. The church membership ratio – a look back and ahead

The data for church membership goes back to 1974, they are reported in Table 17. There is a small data break in 1990, but here both data exists. Figure 11 show these data.

Paying c	hurch tax	In CPR	register
Year	Percent	Year	Percent
1974	95.2	1990	89.3
1975	94.9	1991	88.9
1976	94.8	1992	88.2
1977	94.5	1993	87.7
1978	94.4	1994	87.4
1979	94.1	1995	87.0
1980	93.8	1996	86.5
1981	93.6	1997	86.1
1982	93.0	1998	85.8
1983	92.6	1999	85.4
1984	92.3	2000	85.1
1985	91.9	2001	84.7
1986	91.5	2002	84.3
1987	91.1	2003	83.8
1988	90.7	2004	83.4
1989	90.2	2005	83.3
1990	89.9	2006	83.0
		2007	82.6
		2008	82.1
		2009	81.5
		2010	80.9
		2011	80.4
		2012	79.8
		2013	79.1

Table 17. The national membership data

Source: Statistics Denmark various publications.

The data has a clear trend. The series is upward limited at 100 and it has never been higher than 98, as there are about 1 % Catholics, various "Free" churches, Jews, etc. that goes way back. Also there has, since the start of the 20th century been atheists. Thus, as the series is projected backwards it has to converge to 98. It is clear that the series bends, and as immigration of non-members of the church started in the mid 1960s it is reasonable to imagine that the stylized picture is as drawn on Figure 12.

The black line is a stylized version of the one on Figure 11 and the broken line is the projection. The main problem generalizing and projecting the line is that it is fairly flat between 1980 and 2000, but bends at the ends. The theory of the religious transition predicts that there should be convergence *both* to the high old level and to a new lower level.

At the old end things are clear. Due to the 98 % limit it is obvious where the upper level is, and the curve on Figure 11 does bend, so here things are rather clear. The old level is thus taken to be 98 % and it was the stable long-run level before 1950, and the fall from 1950 to 1960 was still negligible.

At the new end things are less clear. There is no sign of a convergence to a new level. The membership rate is still rather high, and it looks as if the fall is (still) increasing. So I presume that the stable low level is still rather distant. But as our theory predicts that the fall will eventually level off I predict a constant fall of about 6 percentage point for the next couple of decades. Thus it looks as if a membership rate of 70 % will be reached before 2030.

It the development continues the rate will reach 50% around 2060. That will, of course make the 'Danish solution' that combines religious freedom with one 'official' church a dubious construction.

7. Conclusions

The cross-municipal pattern in both church density and church membership is explained rather well by a simple model using three explanatory variables: The area and population of the municipality and a binary dummy for the capital region that works very much as income in the relation. The two explained variables have no further interaction than the one generated by the three explanatory variables. This is the causal structure shown on Figure 1 in the introduction. These findings are parts of a pattern analyzed in the other papers of the project (see references). Both the cross-country and the long-run time-series studies find a strong religious transition: when countries become wealthy religiosity falls. The long-run study analyzes the aggregate church density variable:

It analyzes the *puzzle of the missing church overcrowding* in Europe. Travelers will surely have been impressed by the high age of most churches. The rather few 'new' churches often replace old ones destroyed by war or fire. Paldam *et al.* (2012a and b) will show that this impression is true.⁴ The increase in the number of churches the last couple of centuries is small in Western Europe, where wealth increased dramatically. In the period the demographic transition increased the European population about five times. If people used churches as much today as they did before, they would be bursting from overcrowding, but they are not. Consequently, there must have been a large drop in religiosity.

The present paper looks at the same phenomenon by considering the cross-municipal density of churches in Denmark 2011-12. An important aspect of the puzzle is that few churches have been in the last quarter century Also, most churches belong to the national heritage, which is carefully maintained.

In the last couple of centuries the population in the villages and smaller towns has stagnated with no reduction in the number of churches. Population growth has taken place in the larger towns, especially in the Capital Region, where tiny villages have grown into large suburbs. Here few churches have been built, so church densities are low. And, it appears that churches are not missing.

This means that if church densities are used as a proxy for religiosity, the numbers underestimate the fall in religiosity as is exaggerate church use in the high density areas, where people have left without a corresponding reduction in the number of churches.

^{4.} The study will cover Denmark where data are amazingly good. The papers are not finished, but the argument made is based on a pilot study.

References to papers in project on the religious transition

Theory: Modeling the link to the theory of economic growth

Gundlach, E., Paldam, M., 2012. A model of the religious transition. *Theoretical Economic Letters* 2012: 416-22 **Part 1: Cross-country dimension:** The religiosity index, *R*, aggregate of 14 items from World Values Survey Paldam, M., Gundlach, E., 2013. The Religious Transition. A long-run perspective. *Public Choice* 156, 105-23 Paldam, M., Gundlach, E., 2012. Online appendix for: The Religious Transition. A long-run perspective **Part 2: Long-run time-series dimension:** The church density θ is proxy for religiosity (p.t. unfinished)

Paldam, E.S., Paldam, M., Paldam, U.S., 2013. Churches in Denmark over 700 years. The effect of the Reformation and the Religious Transition. P.t. incompleate draft

These papers are (will be) available from the home page of the project. The papers refer to the literature. URL: http://www.martin.paldam.dk/GT-Religious.php.

Appendix: The data used

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Nr	Municipality	Region	Density	Mprc	Area	Pop	Tb	All	Net
1	Aabenraa	South	3.867	0.838	941.6	59,471	147,174	23	23
2	Aalborg	NorJ	3.331	0.836	1144.0	201,132	150,225	67	67
3	Aarhus	MidJ	2.031	0.748	468.9	315,193	158,295	64	64
4	Albertslund	Cap	1.076	0.588	23.0	27,880	159,278	5	3
5	Allerød	Cap	2.079	0.812	67.4	24,047	219,418	5	5
6	Assens	South	7.247	0.899	512.0	41,394	146,233	30	30
7	Ballerup	Cap	1.247	0.720	34.1	48,127	181,447	6	6
8	Billund	South	4.562	0.882	536.5	26,303	150,537	13	12
9	Bornholm	Island, Cap	5.829	0.850	588.5	41,170	140,808	24	24
10	Brøndby	Cap	1.174	0.622	28.1	34,086	165,634	4	4
11	Brønderslev	NorJ	5.877	0.912	633.2	35,733	137,498	21	21
12	Dragør	Cap	1.457	0.816	18.1	13,723	216,349	2	2
13	Egedal	Cap	1.913	0.817	125.8	41,816	187,476	8	8
14	Esbjerg	South	3.388	0.857	742.5	115,097	152,060	39	39
15	Fanø	Island, South	6.180	0.858	55.8	3,236	187,543	2	2
16	Favrskov	MidJ	7.636	0.892	539.4	47,147	150,145	36	36
17	Faxe	Zea	6.270	0.857	404.5	35,087	153,367	22	22
18	Fredensborg	Cap	1.772	0.737	112.1	39,506	199,056	7	7
19	Fredericia	South	2.189	0.839	134.5	50,242	157,702	11	11
20	Frederiksberg	Cap	1.389	0.648	8.1	100,814	196,991	14	14
21	Frederikshavn	NorJ	4.753	0.893	648.6	61,020	149,270	30	29
22	Frederikssund	Cap	4.061	0.830	305.3	44,324	172,108	18	18
23	Furesø	Cap	1.310	0.721	56.7	38,174	222,107	5	5
24	Faaborg-Midtfyn	South	7.570	0.882	637.0	51,522	145,799	40	39
25	Gentofte	Cap	1.372	0.721	25.5	72,890	288,553	10	10
26	Gladsaxe	Cap	1.222	0.690	25.0	65,468	184,052	8	8
27	Glostrup	Cap	0.923	0.745	13.3	21,672	183,923	2	2
28	Greve	Zea	1.668	0.786	60.2	47,975	189,287	8	8
29	Gribskov	Cap	3.448	0.822	280.0	40,609	181,451	14	14
30	Guldborgsund	Zea	8.907	0.853	903.4	61,750	146,671	55	55
31	Haderslev	South	5.336	0.876	702.0	56,219	148,242	30	30
32	Halsnæs	Cap	2.591	0.811	121.2	30,873	156,593	8	8
33	Hedensted	MidJ	7.393	0.893	551.5	45,989	148,548	35	34
34	Helsingør	Cap	1.624	0.751	121.6	61,585	179,453	12	10
35	Herlev	Cap	1.503	0.704	12.0	26,607	179,341	5	4
36	Herning	MidJ	4.747	0.866	1323.5	86,368	147,411	41	41
37	Hillerød	Cap	3.108	0.787	213.0	48,264	184,332	15	15
38	Hjørring	NorJ	7.261	0.897	929.6	66,105	143,889	48	48
39	Holbæk	Zea	4.758	0.822	578.7	69,354	154,980	34	33
40	Holstebro	MidJ	5.768	0.883	800.2	57,217	148,775	33	33

Table A1.1. The first 40 Municipalities

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Nr	Municipality	Region	Density	Mprc	Area	Pop	Tb	All	Net
41	Horsens	MidJ	4.051	0.827	542.0	83,921	144,419	34	34
42	Hvidovre	Cap	0.786	0.708	24.9	50,871	169,738	5	4
43	Høje-Taastrup	Cap	1.455	0.678	78.4	48,114	167,050	7	7
44	Hørsholm	Cap	1.233	0.800	31.4	24,330	275,197	3	3
45	Ikast-Brande	MidJ	4.431	0.869	736.4	40,625	141,556	19	18
46	Ishøj	Cap	1.421	0.551	25.9	21,111	150,294	3	3
47	Jammerbugt	NorJ	8.020	0.897	872.9	38,651	146,558	31	31
48	Kalundborg	Zea	7.826	0.867	604.0	48,555	154,725	38	38
49	Kerteminde	South	6.317	0.887	205.9	23,746	151,673	15	15
50	Kolding	South	3.575	0.842	605.0	89,523	156,067	32	32
51	København	Cap	1.487	0.585	74.4	551,580	167,495	86	82
52	Køge	Zea	2.784	0.810	255.5	57,467	163,075	16	16
53	Langeland	South	15.366	0.886	291.2	13,016	151,998	20	20
54	Lejre	Zea	6.308	0.830	240.1	26,950	177,681	17	17
55	Lemvig	MidJ	12.192	0.920	508.2	21,326	150,156	26	26
56	Lolland	Zea	11.950	0.846	891.9	45,190	147,716	54	54
57	Lyngby-Taarbæk	Cap	1.312	0.739	38.9	53,357	229,623	7	7
58	Læsø	Island, NorJ	15.957	0.916	118.0	1,880	145,813	3	3
59	Mariagerfjord	NorJ	7.789	0.890	792.9	42,370	144,720	33	33
60	Middelfart	South	5.584	0.892	299.9	37,607	155,848	21	21
61	Morsø	NorJ	15.913	0.863	367.7	21,366	141,998	34	34
62	Norddjurs	MidJ	10.034	0.887	721.2	37,872	144,037	38	38
63	Nordfyns	South	10.226	0.904	451.6	29,337	145,250	30	30
64	Nyborg	South	6.045	0.860	276.2	31,429	151,316	20	19
65	Næstved	Zea	5.299	0.848	681.0	81,149	153,719	43	43
66	Odder	MidJ	6.894	0.869	225.1	21,758	159,185	15	15
67	Odense	South	1.928	0.780	304.3	191,903	148,591	37	37
68	Odsherred	Zea	4.608	0.864	355.3	32,554	158,307	16	15
69	Randers	MidJ	6.160	0.872	800.1	95,776	144,835	59	59
70	Rebild	NorJ	11.081	0.893	625.0	28,879	147,484	32	32
71	Ringkøbing-Skjern	MidJ	8.462	0.900	1488.9	57,904	155,007	49	49
72	Ringsted	Zea	5.434	0.813	295.5	33,127	155,189	18	18
73	Roskilde	Zea	2.285	0.784	211.9	83,148	185,364	20	19
74	Rudersdal	Cap	1.465	0.770	73.8	54,626	266,115	8	8
75	Rødovre	Cap	1.083	0.711	12.1	36,920	171,862	4	4
76	Samsø	Island, MidJ	18.102	0.833	114.3	3,867	156,221	7	7
77	Silkeborg	MidJ	4.254	0.864	864.9	89,329	155,771	38	38
78	Skanderborg	MidJ	4.999	0.870	436.1	58,013	158,979	29	29
79	Skive	MidJ	9.870	0.905	690.7	47,620	147,636	47	47
80	Slagelse	Zea	5.701	0.833	567.3	77,185	150,693	44	44

Table A1.2. The next 40 Municipalities

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Nr	Municipality	Region	Density	Mprc	Area	Pop	Tb	All	Net
81	Solrød	Zea	2.839	0.838	40.0	21,135	195,700	6	6
82	Sorø	Zea	6.482	0.860	311.1	29,314	155,203	19	19
83	Stevns	Zea	8.706	0.855	250.2	21,823	162,102	19	19
84	Struer	MidJ	7.707	0.883	250.8	22,057	148,796	17	17
85	Svendborg	South	5.466	0.831	417.0	58,545	146,774	32	32
86	Syddjurs	MidJ	8.600	0.870	696.3	41,862	152,001	37	36
87	Sønderborg	South	3.682	0.847	496.6	76,037	151,903	28	28
88	Thisted	NorJ	13.151	0.883	1101.7	44,864	142,415	59	59
89	Tønder	South	8.196	0.877	1278.0	39,043	145,372	32	32
90	Tårnby	Cap	0.972	0.775	65.0	41,168	176,399	4	4
91	Vallensbæk	Cap	1.370	0.714	9.2	14,603	180,587	2	2
92	Varde	South	6.579	0.902	1255.8	50,156	153,603	33	33
93	Vejen	South	6.311	0.875	814.4	42,784	137,575	27	27
94	Vejle	South	4.344	0.839	1066.3	108,186	156,418	47	47
95	Vesthimmerland	NorJ	10.640	0.899	771.8	37,595	137,550	40	40
96	Viborg	MidJ	7.874	0.881	1474.1	93,984	151,275	74	74
97	Vordingborg	Zea	5.905	0.848	621.0	45,725	148,136	27	27
98	Ærø	Island, South	10.553	0.877	90.5	6,633	140,411	7	7

Table A1.3. The last 18 Municipalities

Figure 3 shows that most of the 30 members of the left hand group are from the Capital Region, and most of the 68 members of the right hand group are in other regions. Some exceptions occur in each group. They are listed in Table A4. Some large towns (Fredericia, Odense and Aarhus) are in the left hand group. The remaining four exceptions are borderline cases. It is arguable that Greve is a Copenhagen suburb and that Frederikssund, Gribskov and Hillerød rather belong to the Zealand Region.

Table A2: Exceptions to groups for Lndens

Non Can in la	ft hand group	Cap in right hand group				
Non-Cap III le	n nanu group	Cap in right hand group				
Municipality	Region	Municipality	Region			
Fredericia	South	Frederikssund	Cap			
Greve	Zea	Gribskov	Cap			
Odense	South	Hillerød	Cap			
Aarhus	MidJ					